Combined Presentations
1. Outcome
This Circular provides guidance on creating combined presentations that integrate physical, monetary, and qualitative accounts for ocean accounting. Readers will understand how to bring together data from multiple account types--asset accounts (TG-3.1 Asset Accounts), flow accounts (TG-3.2 Flows Environment to Economy and TG-3.4 Flows Economy to Environment), economic activity accounts (TG-3.3 Economic Activity), social accounts (TG-3.5 Social Accounts), and governance accounts (TG-3.7 Governance Accounts)--into coherent presentations that support analysis and decision-making for specific policy themes. Combined presentations follow the principles of thematic accounting described in SEEA Ecosystem Accounting Chapter 13, enabling the derivation of indicators that span environmental, economic, and social dimensions of ocean-related policy questions[1].
Combined presentations do not constitute new accounts; rather, they represent an analytical layer that draws on underlying accounts compiled according to the guidance in preceding circulars. Their value lies in presenting integrated views that allow decision-makers to understand the connections between ecosystem condition, economic activity, and human wellbeing in marine and coastal areas.
Critical decision use cases enabled by combined presentations include:
Policy dashboards for ocean management: Combined presentations provide the data foundation for integrated ocean management dashboards used by cabinet ministers, national planning commissions, and coastal management authorities. A typical dashboard presents headline indicators from extent accounts (total area of marine and coastal ecosystems), condition accounts (aggregate ecosystem health index), economic accounts (ocean economy contribution to GDP), and social accounts (ocean-dependent employment), allowing decision-makers to monitor overall ocean status at a glance and identify areas requiring policy attention.
Ocean economy reporting to parliament: Governments increasingly report to legislatures on the contribution of ocean resources to national prosperity and the sustainability of ocean-based development. Combined presentations enable reports that integrate economic output data with asset depletion measures, demonstrating whether growth in ocean sectors is achieved through sustainable use or resource depletion. The depletion-adjusted measures derived from combined presentations align with the 2025 SNA treatment of resource depletion as a production cost, providing legislators with signals about the long-term viability of resource-dependent revenue streams (see TG-1.1 National Ocean Budgets).
Tracking progress against SDG 14 targets: The Sustainable Development Goal 14 (Life Below Water) includes targets requiring integrated monitoring across ecological, economic, and social dimensions. Combined presentations support reporting on target 14.7 (increase economic benefits from sustainable use of marine resources) by linking economic indicators from ocean economy accounts to sustainability indicators from asset accounts and ecosystem condition accounts, demonstrating whether economic benefits are increasing alongside or at the expense of marine resource stocks[2].
Marine spatial planning and integrated coastal zone management: Spatial planning processes require integrated information on where different activities occur, what ecosystem values exist in different zones, and how uses interact. Combined presentations organized by spatial zone integrate data on ecosystem extent and condition, economic activity by location, ecosystem service flows, and governance arrangements (protected area status, zoning designations), enabling planners to identify conflicts, synergies, and priority areas for conservation or development.
This Circular addresses the structure of integrated ocean account frameworks (Section 3.1), approaches to physical-monetary integration (Section 3.2), inclusion of social and governance dimensions (Section 3.3), the compilation procedure for assembling combined presentations from component accounts (Section 3.4), visualization and communication strategies (Section 3.5), and extended balance sheets for ocean wealth accounting (Section 3.6). Section 3.7 provides a worked example demonstrating the compilation process using synthetic data for a hypothetical coastal zone.
2. Requirements
This Circular requires familiarity with:
- TG-0.1 General Introduction to Ocean Accounts -- for the conceptual framework and key components of Ocean Accounts
- TG-0.2 Standards Overview -- for the classification frameworks and international statistical standards that underpin consistent integration across account types
- TG-3.1 Asset Accounts -- for the methodology of physical and monetary asset accounts that form the basis for combined presentations
- TG-3.2 Flows Environment to Economy -- for physical flow accounting of natural resource extraction and ecosystem service use
- TG-3.3 Economic Activity -- for the ocean economy thematic and extended accounting framework that provides economic data for integration
- TG-3.4 Flows Economy to Environment -- for residual flow accounts documenting pressures on the marine environment
3. Guidance Material
The SEEA Ecosystem Accounting framework recognizes that policy and analysis related to the environment and human connection to it can be framed in many ways, often requiring consideration of specific environmental themes such as biodiversity, climate change, oceans, and urban areas[3]. The ocean accounts framework responds to this need by integrating data from the SEEA Central Framework, SEEA Ecosystem Accounting, and the System of National Accounts into a coherent information set that supports decision-making for ocean governance.
Combined presentations enable decision-makers to monitor several critical trends: changes in ocean ecosystem extent and condition; changes in ocean wealth including produced and non-produced assets; ocean-related income and welfare for different groups of people; ocean-based economic production; and changes in how oceans are governed and managed[4]. These are important inputs into a range of ocean governance processes including marine spatial planning, integrated coastal zone management, development planning for ocean sectors, and collaborative resource management.
The Global Ocean Accounts Partnership (GOAP) plays a central role in developing and promoting the ocean accounts framework internationally. The SEEA EA recognizes the existence of an "ocean accounting community of practice" whose objective is to ensure that data common to multiple communities--including those for marine spatial planning, disaster risk, and climate change--are standardized and shared[5]. The GOAP has supported pilot studies in several countries (see Section 3.2) and continues to advance methodological guidance for implementing combined presentations.
The general ecosystem accounting framework illustrated in Figure 3.8.2 provides the conceptual foundation for combined presentations. It shows how ecosystem assets are measured through extent, condition, and other characteristics, how they supply ecosystem services, and how those services flow to the economy, generating benefits for society.
Figure 3.8.2: General ecosystem accounting framework (adapted from SEEA EA Figure 2.1)[6]
3.1 Integrated Ocean Account Framework
Structure and components
The ocean accounts framework builds on SEEA EA ecosystem extent, ecosystem condition, and ecosystem services flow accounts, adding accounts for natural resources and physical flows from the SEEA Central Framework and accounts concerning the ocean economy, governance, management, and technology[7]. Figure 3.8.1 illustrates the coverage of this integrated framework.
Figure 3.8.1: Coverage of the ocean accounts framework (adapted from SEEA EA Figure 13.2)[7:1]
The core components of an integrated ocean account framework are:
Environmental accounts comprise the physical and monetary measurement of ocean-related environmental assets and flows:
- Extent accounts for coastal and marine ecosystem types (see TG-3.1 Asset Accounts)
- Condition accounts recording ecosystem health indicators (see TG-2.1 Biophysical Indicators)
- Ecosystem services flow accounts in physical and monetary terms (see TG-2.4 Ecosystem Goods and Services)
- Individual environmental asset accounts for fish stocks, minerals, and energy resources
- Physical flow accounts for pressures including emissions and waste (see TG-3.4 Flows Economy to Environment)
Economic accounts document the contribution of the ocean to economic activity:
- Ocean economy thematic and extended accounts measuring industry contributions to GDP (see TG-3.3 Economic Activity)
- Supply and use tables for ocean-characteristic products
- Employment accounts for ocean-related industries
- Investment accounts for ocean infrastructure (see TG-2.6 Ocean Investment)
Social accounts record human dimensions of ocean-society relationships:
- Wellbeing indicators for ocean-dependent communities (see TG-3.5 Social Accounts)
- Equity measures showing distribution of benefits and burdens
- Vulnerability and resilience indicators
- Traditional knowledge and cultural connections (see TG-3.6 Traditional Knowledge)
Governance accounts document institutional arrangements:
- Marine spatial planning coverage and zoning
- Regulatory frameworks and compliance
- Management effectiveness indicators (see TG-3.7 Governance Accounts)
Principles for combining accounts
The SEEA EA identifies three key principles that enable accounts for different themes to be combined into coherent presentations[8]:
First, there must be a clearly agreed geographical area. For ocean accounting, this is the ocean accounting area, which typically aligns with a country's Exclusive Economic Zone (EEZ) plus territorial waters and coastal zones. For thematic presentations, a focus on more targeted areas (e.g., specific catchments, marine protected areas, or ecosystem types) may be appropriate. The delineation of geographical areas should follow the guidance in TG-0.1 General Introduction regarding the ocean accounting area.
Second, there must be a set of entities that are the focus of accounting. In ecosystem accounting, the focus is on ecosystems; in the SNA, the focus is on economic units; in the Central Framework, the focus is on individual stocks and flows. Combined presentations integrate multiple entity types, requiring consistent classifications that allow linkages across domains. The classification frameworks described in TG-0.2 Standards Overview provide the basis for this consistency.
Third, multiple accounts are required to organize relevant information for a single theme. The SEEA and SNA frameworks demonstrate that no single account captures all relevant information. The same applies to combined presentations: a coherent narrative for ocean sustainability requires extent accounts, condition accounts, service flow accounts, economic accounts, and potentially social and governance accounts.
Links between accounts are possible because of consistent application of a delineated geographical boundary and consistent classifications for agreed entities[9]. This allows combined presentations to convey a coherent narrative, support derivation of consistent indicators, and enable integration of data into models and analytical tools.
Accounting principles are equally applicable across different spatial scales and entities[10]. Combined presentations can therefore operate at national, regional, or local scales depending on the policy question being addressed. The SEEA EA notes that choices of geographical area, entity types, and classifications "should be made with a focus on the use of the accounts, including the potential to compare results over time and in different locations"[10:1]. For ocean accounting, this means that combined presentations for marine spatial planning may operate at local scales (individual bays, reefs, or marine management areas), while those supporting national development planning may aggregate to the full EEZ. Compilers should align the spatial scope of combined presentations with existing administrative boundaries and decision-making processes to maximize utility, following the broader guidance in SEEA EA para. 13.9 on linking geographical scope to existing data and governance arrangements.
The connections between the core ecosystem accounts that underpin combined presentations are illustrated in Figure 3.8.3. Ecosystem extent and condition accounts are mutually informing; condition data feeds into physical ecosystem service flow accounts; physical and monetary service flow accounts are linked through valuation; and monetary service flows provide the basis for monetary ecosystem asset valuation.
Figure 3.8.3: Connections between ecosystem accounts (adapted from SEEA EA Figure 2.2)[11]
3.2 Physical-Monetary Integration
A distinctive feature of combined presentations is the integration of physical and monetary data to provide complementary perspectives on ocean resources. Physical accounts record stocks and flows in tonnes, hectares, cubic metres, or number of individuals; monetary accounts translate these into currency values that can be aggregated and compared with economic aggregates[12].
Approaches to integration
Three approaches to physical-monetary integration are relevant for ocean accounting:
Parallel presentation displays physical and monetary accounts side by side, allowing users to examine both dimensions. This approach is particularly useful when physical quantities and monetary values diverge--for example, when the monetary value of a fish stock increases due to rising prices even as physical biomass declines. Parallel presentation preserves information in both dimensions without implying that one takes precedence. The asset account structure in TG-3.1 Asset Accounts provides the foundation for parallel presentation of physical and monetary data.
Hybrid accounts integrate physical and monetary data within a single table structure. The SEEA Central Framework describes hybrid accounts for environmental protection expenditure that show both monetary expenditure and associated physical outcomes (e.g., tonnes of pollutants removed)[13]. For ocean accounting, hybrid accounts might show investment in coastal protection infrastructure alongside physical measures of coastal erosion or protection.
Extended supply and use tables incorporate physical flows alongside monetary transactions. The SEEA EA describes how physical supply and use tables for ecosystem services can be linked to monetary supply and use tables, enabling analysis of the physical basis of economic activity[14]. For the ocean economy, this approach reveals the material throughput underlying economic output. The supply and use framework in TG-3.3 Economic Activity provides the basis for this integration.
Linking ecosystem services to economic activity
A critical integration challenge is linking ecosystem services from marine ecosystems to economic activity. The SEEA EA framework provides the conceptual basis: ecosystem services represent the contributions of ecosystems to benefits, with ecosystem services flow accounts recording the supply by ecosystem types and the use by economic units and households[15].
For combined presentations, the linkage can be illustrated by tracing provisioning services through to economic output:
- Ecosystem extent and condition accounts (see TG-3.1 Asset Accounts) record the area and health of fish-supporting ecosystems
- Ecosystem services accounts (see TG-2.4 Ecosystem Goods and Services) record the biomass provisioning service--fish available for harvest
- Individual asset accounts (see TG-3.1 Asset Accounts, Section 3.3) record fish stock levels and sustainable yield
- Physical flow accounts (see TG-3.2 Flows Environment to Economy) record the harvest (extraction from the environment)
- Economic activity accounts (see TG-3.3 Economic Activity) record the value added by the fishing industry
- Social accounts (see TG-3.5 Social Accounts) record employment, income, and wellbeing for fishing-dependent communities
This sequence illustrates how combined presentations trace the pathway from ecosystem assets through ecosystem services to economic activity and social outcomes.
Pilot implementation experience
The ocean accounts framework has proved effective in supporting pilot studies across several countries, each answering policy-relevant questions through combined presentations[16]. The pilot studies in Samoa, Thailand, and Viet Nam centred on sustainable tourism, linking tourism income, natural resource use, land-based pollution, and ecosystem impacts. China's pilot focused on developing harmonized mangrove maps and improving understanding of environmental assets in Beihai Bay. Malaysia examined food security risk concerning fish stocks along the Straits of Malacca under expected future climate variability. All pilots depended on available data that were often limited, but one important function of the ocean accounts framework was to guide the search for and integration of data[16:1].
These experiences demonstrate that combined presentations can be compiled even with partial data coverage. Compilers should begin with available accounts and progressively expand coverage as data systems mature, following the incremental implementation approach described in TG-0.1 General Introduction.
Physical-monetary discrepancies
Combined presentations should explicitly address discrepancies between physical and monetary trends, as these often reveal important information for policy. Common discrepancies include:
- Declining physical stocks with stable or increasing values: Rising scarcity can increase unit prices faster than stocks decline, masking physical depletion in monetary terms. This is particularly relevant for fisheries where declining catch per unit effort (CPUE) may coincide with increasing fish prices[17].
- Increasing physical stocks with declining values: Abundance can reduce unit prices, potentially reducing incentives for sustainable management
- Unvalued ecosystem services: Many regulating and cultural services from marine ecosystems are not captured in monetary accounts, creating gaps between comprehensive physical measures and partial monetary values. The treatment of ecosystem services valuation in TG-1.9 Valuation addresses these measurement challenges.
The SEEA EA notes that "monetary values may be a poor guide to physical sustainability" and recommends that combined presentations include both physical and monetary information to support comprehensive analysis[18].
3.3 Including Social and Governance Dimensions
Combined presentations for ocean accounting extend beyond environmental and economic data to incorporate social and governance dimensions, following the comprehensive scope of the ocean accounts framework.
Social dimensions
The 2025 SNA recognizes that national accounts contribute to measuring wellbeing and sustainability beyond GDP, including through extended accounts for labour, human capital, and household distributional analysis[19]. For ocean accounting, social dimensions include:
Distributional analysis examines how the benefits and costs of ocean use are distributed across population groups. Combined presentations can show, for example:
- How ocean economy employment is distributed by region, gender, and age group (see TG-3.5 Social Accounts, Section 3.1.2)
- How coastal ecosystem degradation disproportionately affects vulnerable communities (see TG-3.5 Social Accounts, Section 3.3)
- How access to marine recreation varies across income groups
Wellbeing indicators complement monetary measures with broader dimensions of quality of life. The social accounts guidance in TG-3.5 Social Accounts identifies relevant domains including employment quality, food security, health, and cultural connections to the ocean.
Vulnerability and resilience measures document the susceptibility of communities to ocean-related shocks and their capacity to adapt. Combined presentations can integrate data on:
- Economic dependence on ocean sectors
- Exposure to environmental pressures and pollution (see TG-2.7 Pollution and Other Flows to Environment)
- Adaptive capacity indicators
Governance dimensions
Governance accounts document the institutional arrangements that shape ocean use and management (see TG-3.7 Governance Accounts). For combined presentations, governance data provides context for interpreting environmental and economic trends:
Marine spatial planning accounts show the allocation of ocean space across different uses, enabling analysis of how spatial planning decisions relate to ecosystem condition and economic outcomes.
Protected area coverage accounts document the extent of marine protected areas and other area-based conservation measures, which can be related to ecosystem condition and ecosystem service flows. SDG indicator 14.5.1 measures "Coverage of protected areas in relation to marine areas"[20].
Management effectiveness indicators assess whether governance arrangements are achieving their objectives, providing crucial context for understanding why environmental or economic outcomes are improving or declining.
The SEEA EA emphasizes that governance accounts should include "explicit consideration of institutional and legal frameworks such as zoning, rules and decision-making institutions, social circumstances of affected populations, and measures of ocean-related risks and resilience"[21].
3.4 Compilation Procedure for Combined Presentations
This section outlines the step-by-step procedure for assembling combined presentations from component accounts. Understanding this workflow is essential for organizing disparate data sources into integrated analytical products that support decision-making.
Step 1: Define the policy question and presentation scope
The compilation process begins with defining the policy question the combined presentation will address. This determines which accounts to include, the geographical scope, and the temporal frame. SEEA CF para. 6.56 emphasizes that "the structures of combined presentations of monetary and physical data are dependent on the availability of data and the question under investigation"[22].
For ocean accounting, typical policy questions include:
- Is the ocean economy growing sustainably? (requires asset accounts, economic accounts, and depletion measures)
- How do coastal protection benefits from ecosystems compare to infrastructure costs? (requires ecosystem service accounts, ecosystem extent/condition accounts, and public expenditure accounts)
- Are fishing communities benefiting from improved fish stock management? (requires fish stock asset accounts, economic accounts for fisheries, and social accounts for fishing-dependent communities)
Once the policy question is defined, compilers should document:
- The specific policy decision or analytical purpose the presentation will serve
- The primary users (cabinet, parliament, planning ministry, coastal management agency)
- The geographical scope (national EEZ, specific coastal zone, marine protected area)
- The time period and frequency (annual snapshots, multi-year trends)
- Which accounts are essential versus desirable for answering the question
Step 2: Identify and assemble component accounts
Based on the defined scope, compilers identify the component accounts required and assess their availability and quality. Component accounts may include:
Core accounts (always required):
- Ecosystem extent accounts for relevant marine/coastal ecosystem types
- Economic accounts showing ocean economy GVA and employment
- At least one flow account (either environment-to-economy or economy-to-environment)
Supporting accounts (included as available):
- Ecosystem condition accounts
- Ecosystem services flow accounts (physical and monetary)
- Fish stock or other individual environmental asset accounts
- Social accounts (employment, distributional measures)
- Governance accounts (protected areas, zoning)
- Public expenditure accounts for ocean-related functions
For each identified account, compilers should verify:
- Reference period (does it match the presentation timeframe?)
- Geographical coverage (does it align with the defined accounting area?)
- Classification systems (are they consistent with other accounts?)
- Data quality ratings and limitations
- Update frequency and publication lag
Step 3: Reconcile classifications and boundaries
Before combining accounts, compilers must ensure consistent classifications and boundary definitions. The SEEA CF notes that "any differences in classification need to be resolved before physical and monetary data are combined" (para. 6.88)[23].
Key reconciliation tasks include:
Geographical boundaries: Verify that all accounts refer to the same ocean accounting area. Where accounts use different spatial units (e.g., administrative regions versus ecosystem spatial units), establish concordance tables or spatial overlays to enable consistent aggregation.
Time periods: Align all accounts to a common reference period. The SEEA CF emphasizes that "it is important to ensure that the source data underpinning the physical and the monetary data relate to the same accounting period" (para. 6.71)[24]. Where accounts use different reference dates (e.g., fiscal year versus calendar year, or biological stock assessment periods versus accounting years), document the adjustments made.
Product and industry classifications: Ensure that ocean economy accounts, supply-use tables, and physical flow accounts use consistent classifications. Map national classifications to ISIC (industries) and CPC (products) as described in TG-0.2 Standards Overview.
Ecosystem type classifications: Confirm that extent accounts, condition accounts, and ecosystem service accounts use the same ecosystem type classification, typically based on the IUCN Global Ecosystem Typology for marine biomes.
Measurement units: Standardize physical units across accounts. For example, ensure fish biomass is consistently measured in tonnes (live weight), ecosystem extent in square kilometres, and carbon flows in tonnes CO2-equivalent.
Step 4: Structure the presentation format
With component accounts identified and classifications reconciled, compilers design the presentation format. The SEEA CF describes a general structure (Table 6.4) that can be adapted for ocean themes, comprising four sections[25]:
Section A: Monetary flows
- Supply and use of ocean-characteristic products (by industry and product)
- Gross value added by ocean-related industries
- Depletion-adjusted value added
- Environmental taxes, subsidies, and transfers
Section B: Physical flows
- Natural resource inputs (fish harvest, mineral extraction, water abstraction)
- Ecosystem service flows (provisioning, regulating, cultural services by ecosystem type)
- Residual flows (emissions, waste to marine environment)
Section C: Stocks and asset flows
- Closing stocks of environmental assets (fish stocks, ecosystem extent, mineral reserves) in physical and monetary terms
- Depletion and degradation
- Closing stocks of fixed assets (vessels, offshore infrastructure, port facilities)
- Gross fixed capital formation
Section D: Related indicators
- Employment by ocean industry
- Population in coastal zones
- Productivity indicators (GVA per employee, resource productivity)
- Intensity indicators (emissions per unit output, extraction per unit stock)
The column structure should remain consistent across all four sections to facilitate comparison. Typical column headings include:
- Industries (by ISIC division or aggregation)
- Households
- Government
- Capital accumulation
- Rest of world
- Total
Step 5: Populate the presentation and check accounting identities
With the structure defined, compilers populate the combined presentation by extracting relevant entries from component accounts. The SEEA CF emphasizes the importance of maintaining accounting identities: "it is important to ensure that the implicit relationships between quantities and prices are meaningful and reasonable" (para. 6.91)[26].
Key accounting identities to verify:
- Supply equals use: For each product in monetary terms and each physical flow, total supply must equal total use
- Stock-flow consistency: Changes in asset stocks (closing stock minus opening stock) must equal net additions (total additions minus total reductions)
- Physical-monetary consistency: For marketed flows, the ratio of monetary value to physical quantity must yield plausible unit prices
- GVA aggregation: Sum of GVA across ocean industries must equal ocean economy GVA reported in economic accounts
Where discrepancies arise, compilers should investigate whether they result from:
- Differences in scope between accounts (e.g., residence versus territory recording)
- Timing mismatches (e.g., production versus consumption timing)
- Genuine data errors requiring correction in source accounts
- Conceptual differences requiring explanatory notes
Step 6: Add contextual information and interpretation
The final step is adding contextual information that helps users interpret the combined presentation. The SEEA CF notes that combined presentations "have the potential to serve as a bridge between" scientists and economists (para. 6.59)[27], requiring clear communication for diverse audiences.
Essential contextual elements include:
- Introduction: Brief statement of the policy question addressed and how the presentation supports decision-making
- Methodological notes: Description of scope, classifications, valuation methods, data sources, and quality limitations
- Interpretation guidance: Explanation of key patterns, trends, and discrepancies visible in the data
- Policy implications: Summary of what the integrated data reveal about sustainability, distribution, or governance effectiveness
- References and links: Citations to underlying accounts and related circulars
For multi-period presentations showing trends, additional contextual information should cover:
- Changes in methodology or coverage affecting time-series comparability
- Revisions made to earlier periods
- Factors explaining observed trends (policy changes, external shocks, data improvements)
3.5 Visualization and Communication
Combined presentations are most effective when designed for communication to diverse audiences. The integration of multiple account types creates opportunities for visualization that reveal connections not apparent from individual accounts alone.
Dashboard approaches
Dashboards provide a compact format for presenting key indicators drawn from combined accounts. The SEEA Central Framework describes combined presentations that bring together information from various accounts to support decision-making[28]. For ocean accounting, effective dashboards typically include:
Headline indicators that summarize overall status:
- Total extent of marine and coastal ecosystems (from extent accounts)
- Aggregate ecosystem condition index (see TG-2.1 Biophysical Indicators)
- Ocean economy contribution to GDP (see TG-3.3 Economic Activity)
- Ocean-dependent employment (see TG-3.5 Social Accounts)
Trend indicators that show change over time:
- Change in ecosystem extent by type
- Change in condition for key ecosystem types
- Change in sustainable yield versus actual harvest (see TG-2.3 Sustainability Indicators)
- Change in ocean economy employment
Distributional indicators that reveal how benefits and impacts are distributed:
- Ecosystem services by beneficiary type (see TG-2.4 Ecosystem Goods and Services)
- Economic benefits by region and community type
- Vulnerability indicators by population group
Pressure and response indicators that show drivers and policy actions:
- Pollution loads by source (see TG-3.4 Flows Economy to Environment)
- Climate change impacts
- Protected area coverage
- Environmental expenditure
Table 1 provides an illustrative indicator template organized by account domain, drawing on indicator categories derived from ocean accounts[2:1]. Compilers should adapt this template to national circumstances and priority policy questions.
Table 1: Illustrative Ocean Accounts Dashboard Indicator Template
| Domain | Indicator | Account Source | SDG Linkage |
|---|---|---|---|
| Ecosystem extent | Total area of marine and coastal ecosystems (km2) | Extent account | 14.2.1 |
| Ecosystem condition | Aggregate condition index by ecosystem type | Condition account | 14.1.1 |
| Ecosystem services | Value of provisioning services (fisheries, aquaculture) | Ecosystem services flow account | 14.7.1 |
| Ocean economy | Ocean economy GVA as share of national GDP | Thematic economic account | 14.7.1 |
| Employment | Ocean-dependent employment by sector and gender | Economic activity account | 8.5.2 |
| Pressures | Nutrient and pollution loads to marine waters (tonnes) | Residual flow account | 14.1.1 |
| Governance | Proportion of EEZ under marine spatial planning | Governance account | 14.5.1 |
| Ocean wealth | Change in total ocean natural capital (monetary) | Extended balance sheet | -- |
Indicator derivation
Combined presentations support derivation of indicators that span multiple account types. Examples relevant to ocean accounting include:
Efficiency indicators that relate economic output to environmental inputs:
- Gross value added per tonne of fish harvested
- Employment per hectare of aquaculture
- Carbon emissions per unit of maritime transport output (see TG-2.11 Resource Efficiency)
Sustainability indicators that relate extraction to regeneration:
- Harvest as a percentage of sustainable yield (see TG-2.3 Sustainability Indicators)
- Ecosystem degradation as a share of ecosystem service value
- Depletion as a share of ocean economy value added
Intensity indicators that express environmental impacts relative to economic scale:
- Pollution intensity of ocean industries
- Land/ocean use intensity of coastal tourism
- Resource intensity of aquaculture production
The SEEA EA notes that "there is the potential for data from the accounts to support climate change modelling focused on implications of projected climate change scenarios on economic activity"[29]. Combined presentations provide the integrated data foundation for such analytical applications. In the ocean context, indicators derivable from ocean accounts include specific measures for ocean conditions such as acidification and concentrations of marine debris, as well as indicators for ocean-related beneficiaries such as income of small-scale fishers[2:2].
Communication for decision-making
Effective communication of combined presentations requires attention to audience needs. Key considerations include:
Policy relevance: Combined presentations should be organized around policy questions rather than accounting structures. For example, a presentation addressing coastal resilience might draw on extent accounts (mangrove coverage), condition accounts (ecosystem health), economic accounts (coastal protection infrastructure), and social accounts (vulnerable populations).
Accessibility: Technical accounting detail should be supported by summary visualizations and plain-language interpretation. The SEEA EA notes that combined presentations "can be a useful tool for mainstreaming discussion" of environmental themes in broader policy discourse[30].
Transparency: Combined presentations should document data sources, methods, and limitations, enabling users to assess confidence in the information presented. Quality assurance considerations from TG-0.7 Quality Assurance apply to combined presentations.
3.6 Extended Balance Sheets
Extended balance sheets represent a specific type of combined presentation that integrates natural capital with conventional national balance sheets, supporting comprehensive ocean wealth accounting.
Conceptual framework
The 2025 SNA describes how balance sheets record the value of assets and liabilities at the beginning and end of accounting periods, with the balancing item being net worth[31]. For comprehensive wealth accounting, the scope of assets can be extended to include natural assets not traditionally recorded in national balance sheets.
For ocean accounting, extended balance sheets incorporate:
Produced assets including vessels, ports, aquaculture infrastructure, and offshore energy installations. These are recorded in conventional national balance sheets and can be allocated to ocean-related sectors. The SEEA EA notes that ocean wealth includes "produced assets (e.g. ports)"[32].
Non-produced natural assets including:
- Marine fish stocks and other aquatic resources (see TG-3.1 Asset Accounts, Section 3.3)
- Seabed mineral and energy resources (see TG-3.10 Offshore Energy Accounts)
- Coastal land resources
Ecosystem assets representing the monetary value of marine and coastal ecosystems. The SEEA EA provides guidance on valuing ecosystem assets using net present value of expected ecosystem service flows[33]. Valuation follows the methods described in TG-1.9 Valuation.
Ocean wealth indicators
Extended balance sheets support derivation of ocean wealth indicators that complement flow-based measures like ocean economy GDP:
Total ocean wealth: The aggregate value of all ocean-related assets, including produced assets, natural resources, and ecosystem assets.
Ocean wealth per capita: Total ocean wealth divided by population, providing a measure of the asset base supporting each person's potential ocean-derived wellbeing.
Ocean wealth change: The change in total ocean wealth between accounting periods, decomposed into:
- Capital formation (investment in produced assets)
- Natural growth (regeneration of renewable resources)
- Depletion (extraction exceeding sustainable yield)
- Degradation (decline in ecosystem asset values)
- Revaluation (price changes)
Ocean wealth sustainability: The relationship between ocean wealth change and ocean economy output. Sustainable development implies that wealth is at least maintained over time; depletion of ocean wealth to support current consumption represents unsustainable use. This indicator connects to the sustainability indicators in TG-2.3 Sustainability Indicators.
Limitations and caveats
Extended balance sheets for ocean wealth face several limitations that should be communicated in combined presentations:
Valuation challenges: Monetary valuation of ecosystem assets remains methodologically challenging, with the SEEA EA valuation chapters adopted as recommendations rather than full international standards[34]. Extended balance sheets should present valuations with appropriate uncertainty characterization.
Boundary issues: Ecosystem assets may provide services beyond national economic territory, creating challenges for allocating values to national balance sheets. This is particularly relevant for migratory fish stocks and ecosystem services with transboundary effects. The SEEA EA notes the opportunity to compile global ocean accounts for areas beyond national jurisdiction, where much data are already collected by international agencies[35].
Non-substitutability: Monetary aggregation of produced and natural assets may suggest substitutability that does not exist ecologically. Extended balance sheets should be accompanied by physical accounts that reveal whether natural asset decline is being offset by produced capital or represents genuine wealth loss.
The SEEA EA observes that "a comprehensive set of ocean accounts enables decision makers to monitor several critical trends" including "changes in ocean wealth, including produced assets (e.g. ports) and non-produced assets (e.g. mangroves, coral reefs)"[36]. Extended balance sheets provide the framework for this monitoring.
3.7 Worked Example: Integrated Coastal Zone Combined Presentation
This section presents a worked example demonstrating how to compile a combined presentation for a hypothetical coastal zone. The example uses synthetic data to illustrate the compilation procedure described in Section 3.4, showing how component accounts are assembled into an integrated presentation that answers a specific policy question.
Scenario and policy question
Policy question: Is coastal development in the Northshore Zone proceeding sustainably, balancing economic growth with conservation of marine ecosystems and coastal protection services?
Accounting area: Northshore Coastal Zone, encompassing 50 km of coastline, extending 12 nautical miles offshore, with total area of 1,200 km2 (including 150 km2 of mangroves, 80 km2 of seagrass meadows, 600 km2 of coral reef ecosystems, and 370 km2 of continental shelf waters).
Reference period: Calendar year 2025.
Primary users: Regional development authority, national planning ministry, coastal zone management agency.
Step 1: Component accounts assembled
The following accounts were available for the reference period:
Environmental accounts:
- Ecosystem extent account (from satellite analysis and field surveys)
- Ecosystem condition account (from monitoring stations)
- Fish stock asset account (from stock assessment)
- Ecosystem services flow account (physical measures only; partial monetary valuation)
Economic accounts:
- Ocean economy thematic account for Northshore Zone (GVA by industry)
- Employment account (by industry and demographic group)
- Tourism expenditure account
Social accounts:
- Household distributional account (income by coastal/inland residence)
- Employment by gender and age group
Governance accounts:
- Protected area coverage (marine protected area extent and status)
Data limitations: Monetary valuation of regulating services (coastal protection, carbon sequestration) incomplete; governance effectiveness indicators not quantified; full supply-use tables not available.
Step 2: Combined presentation structure
Based on the policy question, the presentation is structured into four integrated sections:
Section A: Environmental status and trends (extent, condition, services) Section B: Economic activity and benefits (GVA, employment, income) Section C: Sustainability indicators (depletion, degradation, pressure-state relationships) Section D: Governance and management response (protected areas, expenditure)
Section A: Environmental Status and Trends
Table 2: Ecosystem Extent and Condition (2025)
| Ecosystem Type | Opening Extent (km2) | Closing Extent (km2) | Net Change (km2) | Aggregate Condition Index (0-1) | Change in Condition |
|---|---|---|---|---|---|
| Mangroves | 152 | 150 | -2 | 0.68 | -0.03 |
| Seagrass meadows | 82 | 80 | -2 | 0.71 | -0.05 |
| Coral reefs | 605 | 600 | -5 | 0.58 | -0.07 |
| Continental shelf | 370 | 370 | 0 | 0.64 | -0.02 |
| Total | 1,209 | 1,200 | -9 | 0.63 | -0.04 |
Interpretation: The coastal zone experienced net loss of 9 km2 of ecosystem extent during 2025, driven by conversion of mangroves and seagrass to coastal development and degradation of coral reef systems. Condition indices declined across all ecosystem types, with coral reefs showing the most significant decline (0.07 reduction in condition index). The aggregate condition for the zone fell from 0.67 to 0.63, indicating widespread ecosystem stress.
Table 3: Physical Ecosystem Service Flows (2025)
| Ecosystem Service | Unit | Supply by Ecosystem Type | Total Supply | Primary Users |
|---|---|---|---|---|
| Mangrove | Seagrass | Coral Reef | ||
| Fish provisioning | tonnes/yr | 450 | 280 | 1,120 |
| Coastal protection | km protected | 35 | 8 | 22 |
| Carbon sequestration | tonnes C/yr | 1,800 | 640 | 120 |
| Recreation | visitor-days/yr | 8,000 | 12,000 | 95,000 |
Interpretation: Coral reefs provide the majority of fish provisioning services (1,120 of 1,850 tonnes), while mangroves contribute the most to carbon sequestration (1,800 of 2,560 tonnes carbon per year) and coastal protection (35 of 65 km protected). Recreation services are heavily concentrated in coral reef areas (95,000 of 115,000 visitor-days).
Table 4: Fish Stock Asset Account (2025)
| Entry | Value (tonnes) |
|---|---|
| Opening stock (1 Jan 2025) | 18,500 |
| Additions | |
| Natural growth | 3,200 |
| Reductions | |
| Commercial catch | 1,620 |
| Subsistence catch | 230 |
| Natural mortality | 2,150 |
| Closing stock (31 Dec 2025) | 17,700 |
| Sustainability measures | |
| Sustainable yield (MSY estimate) | 1,500 |
| Actual catch | 1,850 |
| Depletion | 350 |
Interpretation: Fish stock declined by 800 tonnes (4.3%) during 2025. Actual catch (1,850 tonnes) exceeded sustainable yield (1,500 tonnes) by 350 tonnes, indicating overfishing and resource depletion. At current extraction rates, fish stocks will continue to decline unless catch is reduced.
Section B: Economic Activity and Benefits
Table 5: Ocean Economy Contribution (2025, million USD)
| Industry | GVA | Employment (persons) | Share of Zone GVA (%) |
|---|---|---|---|
| Marine fishing | 12.5 | 620 | 8.2 |
| Aquaculture | 3.8 | 180 | 2.5 |
| Coastal tourism | 45.2 | 1,350 | 29.6 |
| Maritime transport (port services) | 8.6 | 240 | 5.6 |
| Coastal construction | 15.3 | 890 | 10.0 |
| Other ocean-related | 4.1 | 320 | 2.7 |
| Total ocean economy | 89.5 | 3,600 | 58.6 |
| Non-ocean economy | 63.2 | 2,800 | 41.4 |
| Total zone economy | 152.7 | 6,400 | 100.0 |
Interpretation: Ocean-related industries account for 58.6% of the zone's gross value added and 56% of employment. Coastal tourism is the dominant sector (29.6% of GVA, 1,350 employees), followed by coastal construction (10.0% of GVA) and marine fishing (8.2% of GVA). The zone's economy is heavily dependent on ocean resources and marine ecosystem health.
Table 6: Income Distribution (2025, households by location)
| Indicator | Coastal Households | Inland Households | Zone Average |
|---|---|---|---|
| Median annual income (USD) | 18,400 | 22,600 | 20,200 |
| Share employed in ocean economy (%) | 64 | 28 | 48 |
| Households below poverty line (%) | 22 | 14 | 18 |
Interpretation: Coastal households earn 18% less than inland households on average and have higher poverty rates (22% versus 14%), despite higher dependence on ocean economy employment (64% versus 28%). This suggests that ocean economy jobs, particularly in fishing and aquaculture, provide lower incomes than inland employment, and that coastal communities are economically vulnerable to changes in marine resource availability.
Section C: Sustainability Indicators
Table 7: Integrated Sustainability Indicators (2025)
| Indicator | Value | Interpretation |
|---|---|---|
| Resource efficiency | ||
| GVA per tonne of fish caught (USD/tonne) | 6,757 | Fisheries generate USD 6,757 of value added per tonne of catch |
| Tourism GVA per km2 of coral reef (USD thousand/km2) | 75.3 | Each km2 of coral reef supports USD 75,300 of tourism GVA |
| Sustainability | ||
| Catch as % of sustainable yield | 123% | Overfishing: catch exceeds sustainable yield by 23% |
| Depletion as % of fisheries GVA | 2.8% | Depletion represents a 2.8% cost reducing net fisheries income |
| Ecosystem extent change (%) | -0.7% | Ecosystem extent declined by 0.7% during the year |
| Pressure intensity | ||
| Nutrient loads per unit coastal development (tonnes N/km2) | 3.2 | Each km2 of development generates 3.2 tonnes of nutrient pollution |
| Tourist visitors per km2 of reef | 158 | Coral reef areas receive 158 visitor-days per km2 per year |
Interpretation: The zone shows clear signs of unsustainable use. Fish catch exceeds sustainable levels by 23%, leading to stock depletion that reduces the net income from fisheries by 2.8%. Ecosystem extent is declining, and condition indices are falling across all ecosystem types. Nutrient pollution from coastal development and visitor pressure on coral reefs are contributing to ecosystem stress.
Section D: Governance and Management Response
Table 8: Governance and Management Indicators (2025)
| Indicator | Value | Target | Gap |
|---|---|---|---|
| Marine protected area coverage (km2) | 180 | 300 | -120 |
| MPA coverage as % of zone area | 15.0% | 25.0% | -10.0% |
| Government expenditure on coastal management (million USD) | 2.4 | -- | -- |
| Coastal management expenditure per km2 (USD thousand/km2) | 2.0 | -- | -- |
| Enforcement patrol days | 120 | 180 | -60 |
Interpretation: Marine protected area coverage (15%) falls short of the national target (25%), with 120 km2 additional area requiring designation to meet the target. Government expenditure on coastal management (USD 2.4 million, or USD 2,000 per km2) may be insufficient given the level of ecosystem stress observed. Enforcement capacity (120 patrol days) is below the planned level (180 days), suggesting monitoring and compliance challenges.
Step 3: Integration and policy implications
The combined presentation reveals several critical findings for the policy question:
Finding 1: Economic growth is undermining the natural asset base. The ocean economy contributed USD 89.5 million of GVA and supported 3,600 jobs in 2025, but this economic activity is associated with ecosystem extent loss (9 km2), declining condition (aggregate index fell 0.04), and fish stock depletion (350 tonnes above sustainable yield). Current development patterns are eroding the natural capital that underpins the ocean economy.
Finding 2: Ecosystem services remain largely unvalued. While partial monetary valuation was possible for fish provisioning (USD 12.5 million GVA from commercial fishing), the regulating services provided by mangroves (coastal protection valued at approximately USD 8-10 million per year based on replacement cost) and carbon sequestration (valued at USD 128,000 per year using social cost of carbon at USD 50/tonne) do not appear in conventional economic accounts. Extended balance sheets incorporating ecosystem asset values would more fully represent the zone's wealth.
Finding 3: Benefits and burdens are unequally distributed. Coastal households, which depend most heavily on ocean resources (64% employed in ocean economy), earn lower incomes and experience higher poverty rates than inland households. Ecosystem degradation disproportionately affects these vulnerable coastal communities by reducing fishery productivity and threatening livelihoods.
Finding 4: Management response is insufficient. Protected area coverage (15%) and enforcement capacity (120 patrol days) fall short of targets, while ecosystem indicators continue to decline. Increasing government expenditure on coastal management and expanding protected area coverage are warranted given the economic importance of marine ecosystems to the zone.
Policy implications: To achieve sustainable coastal development, the regional development authority should consider: (1) reducing fishing effort to bring catch within sustainable limits; (2) expanding marine protected area coverage to meet the 25% target, prioritizing coral reef and seagrass conservation; (3) investing in mangrove restoration to enhance coastal protection and carbon sequestration services; (4) developing alternative livelihoods for coastal communities to reduce fishing pressure and income vulnerability; (5) implementing stricter controls on coastal development to reduce nutrient pollution. The combined presentation demonstrates that short-term economic gains are being achieved at the expense of natural capital depletion and ecosystem degradation, requiring policy adjustments to ensure long-term sustainability.
4. Summary
Combined presentations integrate data from multiple account types to support analysis and decision-making for ocean governance. Key principles include:
-
Consistency: Combined presentations draw on underlying accounts compiled using consistent geographical boundaries, entity definitions, and classifications.
-
Complementarity: Physical, monetary, social, and governance data provide complementary perspectives that together support comprehensive analysis.
-
Policy orientation: Effective combined presentations are organized around policy questions rather than accounting structures, with visualizations designed for decision-making audiences.
-
Transparency: Methods, data sources, and limitations should be clearly documented to support informed interpretation.
Combined presentations represent the analytical culmination of the ocean accounts framework, enabling the derivation of integrated indicators and supporting the mainstreaming of ocean sustainability into national policy and decision-making.
5. Acknowledgements
This Circular has been approved for public circulation and comment by the GOAP Technical Experts Group in accordance with the Circular Publication Procedure.
Authors: [Authors from v3 to be retained]
Reviewers: [Reviewers from v3 to be retained]
6. References
SEEA EA (2021), para. 13.1. "The framing provided by ecosystem accounting is systematic and comprehensive with respect to ecosystem extent, ecosystem condition and ecosystem services and offers one perspective on monetary values of ecosystem services and ecosystem assets." ↩︎
SEEA EA (2021), paras. 13.93-13.96 and Appendix A13.3. "In the context of ecosystems, the ocean may be viewed as a set of marine, coastal and transitional ecosystem types and any indicators derivable from SEEA EA can also be derived from the ocean accounts." ↩︎ ↩︎ ↩︎
SEEA EA (2021), para. 13.1. "Policy and analysis related to the environment and human connection to it can be framed in many ways. Often, it requires consideration of specific environmental themes, such as biodiversity, climate change, oceans and urban areas, among many others." ↩︎
SEEA EA (2021), para. 13.81. "A comprehensive set of ocean accounts enables decision makers to monitor several critical trends: (a) changes in ocean ecosystem extent and condition and in associated flows of ecosystem services; (b) changes in ocean wealth, including produced assets (e.g. ports) and non-produced assets (e.g. mangroves, coral reefs); (c) ocean-related income and welfare for different groups of people (e.g. income from fisheries for local communities); (d) ocean-based economic production (e.g. GDP from sectors deemed to be ocean-related); (e) changes in how oceans are governed and managed." ↩︎
SEEA EA (2021), para. 13.90. "Much of the information required to compile ocean accounts is common to other communities of practice including those for marine spatial planning, disaster risk and climate change. One objective of the ocean accounting community of practice is to ensure that these common data are standardized and shared." ↩︎
SEEA EA (2021), Figure 2.1 "General ecosystem accounting framework." ↩︎
SEEA EA (2021), para. 13.83. See Figure 13.2 "Coverage of the ocean accounts framework." ↩︎ ↩︎
SEEA EA (2021), paras. 13.5-13.7. "First, there needs to be a clearly agreed geographical area... Second, it is necessary to have a set of entities that are the focus of accounting... Third, in accounting for a single theme, multiple accounts are required." ↩︎
SEEA EA (2021), para. 13.8. "Links between the various accounts for a theme are possible because of the use of a clearly delineated and consistently applied geographical boundary and consistent application of classifications for agreed entities. This allows the accounts for one theme to convey a coherent narrative." ↩︎
SEEA EA (2021), paras. 13.9-13.10. "For any given thematic accounting exercise, there is no a priori restriction on the geographical area, type of entity or classification that must be applied." and "Accounting principles are themselves equally applicable across different spatial scales and entities and are unaffected by the choice of classification. These choices should therefore be made with a focus on the use of the accounts, including the potential to compare results over time and in different locations." ↩︎ ↩︎
SEEA EA (2021), Figure 2.2 "Connections between ecosystem accounts." ↩︎
SEEA CF (2012), para. 5.1. Asset accounts "record the stock of environmental assets at the beginning and end of each accounting period and the changes in the stock during the accounting period." ↩︎
SEEA CF (2012), Chapter IV describes environmental activity accounts including hybrid formats integrating physical and monetary data. ↩︎
SEEA EA (2021), Chapter 7 describes physical supply and use tables for ecosystem services. ↩︎
SEEA EA (2021), para. 7.1. "Ecosystem services flow accounts record the supply of ecosystem services by ecosystem assets and the use of those services by economic units." ↩︎
SEEA EA (2021), para. 13.92. "The ocean accounts framework has proved effective in supporting several pilot studies, each of which has aimed towards answering policy-relevant questions." Pilots in Samoa, Thailand, Viet Nam, China, and Malaysia are described. ↩︎ ↩︎
SEEA CF (2012), para. 5.457. "A commonly used indicator that is closely associated with the stock of aquatic resources, and in particular with fish, is the catch per unit of effort (CPUE)." ↩︎
SEEA EA (2021), para. 12.4. The chapter on integrated and extended presentations discusses relationships between physical and monetary data. ↩︎
2025 SNA, Chapter 34 (Measuring Well-being) and Chapter 35 (Measuring the Sustainability of Well-being). "A unique feature of the 2025 SNA is the broadening of the national accounts framework to better account for elements affecting wellbeing and sustainability." ↩︎
United Nations SDG Indicator 14.5.1. See also SEEA EA para. 13.94 on ocean account indicators. ↩︎
SEEA EA (2021), para. 13.89. "The objective of the ocean governance accounts is to provide spatially explicit location-based information so that decision makers and planners can make the most effective decisions with respect to ensuring the sustainable use of the ocean." ↩︎
SEEA CF (2012), para. 6.56. "Different forms of combined physical and monetary presentations are possible and, indeed, there is no standard form for these presentations or accounts... Ultimately, the structures of combined presentations of monetary and physical data are dependent on the availability of data and the question under investigation." ↩︎
SEEA CF (2012), para. 6.88. "The monetary accounts and tables are compiled using a consistent set of classifications of products and industries as used in the SNA. For physical data, different classifications are often used for different topics and themes that are specifically developed for analysis of those topics... Any differences in classification need to be resolved before physical and monetary data are combined." ↩︎
SEEA CF (2012), para. 6.71. "It is important to ensure that the source data underpinning the physical and the monetary data relate to the same accounting period." ↩︎
SEEA CF (2012), Table 6.4 and para. 6.122. "Table 6.4 sets out a possible structure and some typical content for the presentation of combined physical and monetary data. It has four sections, covering monetary flows, physical flows, stocks and flows of environmental and fixed assets, and relevant indicators." ↩︎
SEEA CF (2012), para. 6.91. "It is therefore important, when combining monetary and physical data, to confirm that the implicit relationships between quantities and prices are meaningful and reasonable." ↩︎
SEEA CF (2012), para. 6.59. "Because these presentations combine physical data that may be of more immediate relevance to scientists, with monetary data familiar to economists, they also have the potential to serve as a bridge between both types of specialists in the context of their analysis of the environment." ↩︎
SEEA CF (2012), Chapter VI describes applications and combined presentations. ↩︎
SEEA EA (2021), para. 13.74. "There is also the potential for data from the accounts to support climate change modelling focused on implications of projected climate change scenarios on economic activity." ↩︎
SEEA EA (2021), para. 13.46. Combined presentations "can be a useful tool for mainstreaming discussion of biodiversity." ↩︎
2025 SNA, Chapter 13 describes balance sheets. ↩︎
SEEA EA (2021), para. 13.81. ↩︎
SEEA EA (2021), Chapter 10 describes principles of valuation for ecosystem assets. ↩︎
SEEA EA (2021), Chapters 9-12 on valuation were adopted by the UN Statistical Commission "as recommendations rather than standards" pending further methodological development. ↩︎
SEEA EA (2021), para. 13.91. "The ocean is mostly an area beyond national jurisdiction (ABNJ). This introduces the opportunity to compile global ocean accounts, where much of the data are already collected by international agencies." ↩︎
SEEA EA (2021), para. 13.81. ↩︎